

Technische Daten:

Abmessungen: 225 x 175 x 82 mm

Spannungsversorgung: 24 V AC/DC , 230V AC

- Stromaufnahme (ohne Verbraucher): 5 W

für Stellantriebe 24V AC/DC

- max. Stromaufnahme Stellantrieb: < 50 W

Kommunikation: RS485

Kommunikationsprotokoll: ModBus / BACnet

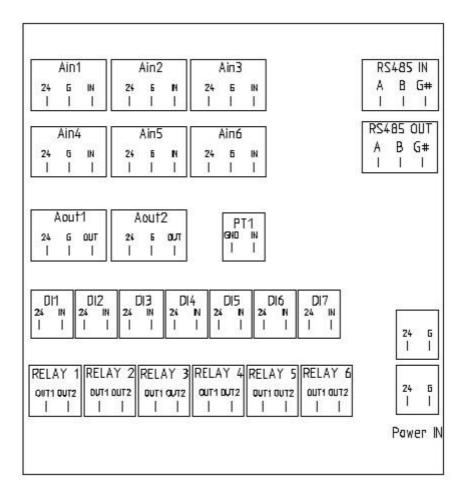
- Relaisausgänge NO 6 Stück (max. 5A)

- Digitale Eingänge 7 Stück (max. 24V AC/DC)

- Analoge Eingänge 6 Stück (0...10V/0...20mA)

Temperatur Eingang 1 Stück PT1000 (Bereich

-256 ... 166 °C)


Lagertemperatur: -30 ... 80 °C
- Arbeitstemperatur: -20 ... 50 °C

- IP Klasse: IP54

Beschreibung:

- BMMU2 ist ein I/O-Modul, das die Funktionen der SPS-Steuerung erweitert. Eine der Anwendungen des Moduls kann die Ansteuerung von Auf/Zu oder 3-Punkt Stellantrieben und analogen Stellantrieben sein.
- 2. Zu den Besonderheiten des Geräts gehören BACnet- und Modbus-Protokollunterstützung, Slave-Geräteverwaltung (Frequenzumrichter und andere Module), alle Arten von HMI Geräten basierend auf der Kommunikation über die RS-485-Unterstützung.
- 3. Die Module der Serie BMMU2 haben eine werkseitig vorinstallierte Anwendung, die es erlaubt, das Modul als I/O-Erweiterung zu verwenden, unabhängig von der Version des Moduls, die Liste der Variablen in der Version der Anwendung "BMMU-...asEXT v1" ist festgelegt. Achten Sie darauf, die Adressen zu verwenden, die bestimmten Eingängen und Ausgängen im Modul zugeordnet sind.

Anschlüsse/ Bedienelemente / Einstellungen:

POWER G - Spannungsversorgung GND
POWER 24 - Stromversorgung 24 V
Ain1-6
Analogeingang 0 - 10 V
Aout1-2-2
Analogausgang 0 - 10 V (0-20mA)
DI1-7

Digitaleingang 1-7 24 - von der Spannungsversorgung 24 V

RELAIS 1 -6 Relais NO Typ max. 5A

PT1

PT1000 (Bereich 256...166°C)

RS485 - Kommunikationsleitungsanschlüsse.

Adress-Schalter - 8 Bit Adresseinstellungen

MODUS- Schalter - Kommunikationseinstellungen

COMM- LED- Kommunikationsanzeige- LED

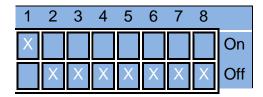
Einstellung der Kommunikationsparameter

Die PLC Controller - Module der Serie ELPM sind Erweiterungsmodule für Steuerungen mit einem Kommunikation Port Modbus RTU oder BACnet MS-TP in Standard RS-485. Die Moduladresse wird über DIP- Schalter im Bereich von 1-256 (Modbus RTU) oder 1-127 (BACnet MS-TP) eingestellt.

Protokollauswahl über 4 PIN DIP- Schalter, Pin Nr. 4

4 PIN DIP- Schalter, Pin 4 aus (OFF) - Modbus RTU-Kommunikation

Standard-Kommunikationsparameter: Übertragungsgeschwindigkeit 9600 bps, 8 Bit Frame, 2 Stopbits, keine Parität,


Adresseinstellung: über 8 PIN DIP- Schalter im Bereich 1-256

4 PIN DIP- Schalter, Pin 4 ein (ON) - BACnet MS-TP-Kommunikation

Der Autodetect- Modus stellt die Kommunikationsparameter automatisch auf die Einstellungen der Master-Steuerung.

Adresseinstellung: über 8 PIN DIP- Schalter im Bereich 1-127

Beispiel Einstellung der Adresse "1"

Modbus RTU Kommunikation

Das PLC Controller - Modul BMM Serie hat das Modbus RTU Protokoll implementiert. Um die Kopplung mit dem Netzwerk herzustellen, schließen Sie den RS-485-Busanschluss an der Klemme RS-485-1 des Controllers an. Die Einstellung der Kommunikationsparameter, wie im vorigen Abschnitt beschrieben.

Die Standard-Kommunikationsparameter:

- Baudrate von 9600 bps (hängt vom System der HMI ab)
- 8 Bit Rahmen
- 2 Stoppbits
- Keine Parität

Alle Variablen sind 32-Bit-Werte, die im Modbus- Protokoll als Input, Coil, Holding Register oder Input Register in verschiedenen Adressräumen dargestellt werden.

Lesen und Schreiben des Datentyps Input und Coil:

Jede Variable ist ein 32-Bit-Wert. Beispielsweise liefert eine Variable mit der Adresse in der Tabelle 0x0008 Bits an den binären Adressen 8*32...9*32-1 für Input und Coil im Modbus- Standard.

Lesen und Schreiben von Datentypen Holding Register und Input Register:

Die Variablen in dieser Form zur einfachen Integration in die GLT-Systeme stehen in verschiedenen Adressräumen zur Verfügung.

0x0000 0x1000 - traditionelle Darstellung gemäß untenstehender Informationen

- Multistate aufgeführte ganzzahlige Variablenwerte entsprechen den beschriebenen Zuständen Dezimal 32-Bit-Wert der Variable wird als Integer-Typ mit Vorzeichen behandelt.
- Repariert wobei die 8 niederwertigsten Bits für den Bruchteil verwendet werden, während die restlichen 24 Bits Teil einer vorzeichenbehafteten Ganzzahl sind. Daraus folgt, dass die Genauigkeit des Festwertes 1/256 ist. Um den in der festen Form dargestellten Wert auf das Ziel (rechts) zu skalieren, multiplizieren Sie ihn mit 1/256 = 0,00390625.

0x1000 0x2000 - Variable im Festformat als Ganzzahl ohne Bruch dargestellt

0x2000 0x3000 - Variable im festen Format mit einer Genauigkeit von einer Dezimalstelle im Dezimalformat. Der Wert von 20,67 wird als 206 angezeigt.

0x3000 0x4000 - Variable im festen Format, die als Werte mit einer Genauigkeit zum Abschleppen von Nachkommastellen im Dezimalformat dargestellt wird. Der Wert von 20,67 wird als 2067 angezeigt.

0x4000 0x5000 - wie beim 0x0000 0x1000 aber die Variablen werden als 16-Bit-Werte behandelt. Das bedeutet, dass die älteren 16 Bit nicht enthalten sind. Adressen müssen durch zwei geteilt werden. Beispielsweise steht eine Variable aus der Tabelle mit der Adresse 0x0124 im 16-Bit-Format unter der Modbus-Adresse 0x4092 zur Verfügung.

0x5000 0x6000 - wie beim 0x1000 0x2000 aber die Variablen werden als 16-Bit-Werte behandelt. Das bedeutet, dass die älteren 16 Bit nicht enthalten sind. Adressen müssen durch zwei geteilt werden. Zum Beispiel eine Variable aus der Tabelle mit der Adresse 0x0124 ist im 16-Bit-Format unter der Modbus- Adresse 0x4092 verfügbar.

0x6000 0x7000 - wie bei 0x2000 0x3000, jedoch werden die Variablen als 16-Bit-Werte behandelt. Das bedeutet, dass die älteren 16 Bit nicht enthalten sind. Adressen müssen durch zwei geteilt werden. Beispielsweise steht eine Variable aus der Tabelle mit der Adresse 0x0124 im 16-Bit-Format unter der Modbus-Adresse 0x4092 zur Verfügung.

0x7000 0x8000 - wie beim 0x2000 0x3000 aber die Variablen werden als 16-Bit-Werte behandelt. Das bedeutet, dass die älteren 16 Bit nicht enthalten sind. Adressen müssen durch zwei geteilt werden.

Beispielsweise steht eine Variable aus der Tabelle mit der Adresse 0x0124 im 16-Bit-Format unter der Modbus-Adresse 0x4092 zur Verfügung.

Variablen in der Darstellung von Multistate und Decimal werden in den Adressräumen nicht verwendet 0x1000 0x4000 und 0x5000 0x8000, weil es die niederwertigsten 8 Bit jeder der Variablen verliert. Die Adressen in der Tabelle werden wie folgt auf das Modbus- Protokoll umgestellt:

Address space	Calculating an address
0x0000 0x1000	Modbus Address = Address.
0x1000 0x2000	Modbus Address = 0x1000 + Address
0x2000 0x3000	Modbus Address = 0x2000 + Address
0x3000 0x4000	Modbus Address = 0x3000 + Address
0x4000 0x5000	Modbus Address = 0x4000 + (Address / 2)
0x5000 0x6000	Modbus Address = 0x5000 + (Address / 2)
0x6000 0x7000	Modbus Address = 0x6000 + (Address / 2)
0x7000 0x8000	Modbus Address = 0x7000 + (Address / 2)

HINWEIS: Sie können keine Aufzeichnung eines einzelnen 16-Bit-Registers in den Adressräumen 0x1000 0x4000. In diesem Fall schreiben Sie die Register paarweise mit dem Befehl Preset Multiple Registers (0x10), der aus einem vollen Wert der 32-Bit-Variablen besteht. Das bedeutet, dass die Adresse des Aufzeichnungsbeginns und die Anzahl der Register eine gerade Zahl sein muss.

BACnet MS-TP Kommunikation

BACnet-Variablen sollten nach dem Anschluss des BACnet-Reglers gesucht werden und die entsprechenden Einstellungen des BACnet-Netzwerks vorgenommen werden (siehe Abschnitt Einstellung der Kommunikationsparameter).

Adressen der Variablen - Modbus RTU und BacNet MS-TP

Variablen zum Lesen des Status von Ein-/Ausgängen

Adres	s (DEC)	Variable Decription		States	Туре		Read [R] / Write [W]
BacNet	Modbus			States	BacNet	Modbus	
0	0	Din1	Lesen des Zustandes des Digitaleingangs DI1	0 - disabled, 1 - enabled	BV	Coil 0	R
1	2	Din2	Lesen des Zustandes des Digitaleingangs DI2	0 - disabled, 1 - enabled	BV	Coil 32	R
2	4	Din3	Lesen des Zustandes des Digitaleingangs DI3	0 - disabled, 1 - enabled	BV	Coil 64	R
3	6	Din4	Lesen des Zustandes des Digitaleingangs DI4	0 - disabled, 1 - enabled	BV	Coil 96	R
4	8	Din5	Lesen des Zustandes des Digitaleingangs DI5	0 - disabled, 1 - enabled	BV	Coil 128	R
5	10	Din6	Lesen des Zustandes des Digitaleingangs DI6	0 - disabled, 1 - enabled	BV	Coil 160	R
6	12	Din7	Lesen des Zustandes des Digitaleingangs DI7	0 - disabled, 1 - enabled	BV	Coil 192	R
7	14	Din1_7	Lesen des Zustands der digitalen Eingänge DI1DI7 (Variable 16 BIT)	0 - disabled, 1 - enabled	BSV	Coil 512528	R
8	16	FreqDin1	Die vom Digitaleingang Din1 gemessene Frequenz	1Hz = 256 (22Hz = 22*256 = 5632 = 0x1600)	AV	Register	R
9	18	FreqDin2	Die vom Digitaleingang Din2 gemessene Frequenz	1Hz = 256 (22Hz = 22*256 = 5632 = 0x1600)	AV	Register	R
10	20	FreqDin3	Die vom Digitaleingang Din3 gemessene Frequenz	1Hz = 256 (22Hz = 22*256 = 5632 = 0x1600)	AV	Register	R
11	22	FreqDin4	Die vom Digitaleingang Din4 gemessene Frequenz	1Hz = 256 (22Hz = 22*256 = 5632 = 0x1600)	AV	Register	R
12	24	FreqDin5	Die vom Digitaleingang Din5 gemessene Frequenz	1Hz = 256 (22Hz = 22*256 = 5632 = 0x1600)	AV	Register	R
13	26	FreqDin6	Die vom Digitaleingang Din6 gemessene Frequenz	1Hz = 256 (22Hz = 22*256 = 5632 = 0x1600)	AV	Register	R
14	28	FreqDin7	Die vom Digitaleingang Din7 gemessene Frequenz	1Hz = 256 (22Hz = 22*256 = 5632 = 0x1600)	AV	Register	R
15	30	CountDin1	Startet den Zähler des Digitaleingangs Din1	1 = 256 (22 = 22*256 = 5632 = 0x1600)	AV	Register	R
16	32	CountDin2	Startet den Zähler des Digitaleingangs Din2	1 = 256 (22 = 22*256 = 5632 = 0x1600)	AV	Register	R
17	34	CountDin3	Startet den Zähler des Digitaleingangs Din3	1 = 256 (22 = 22*256 = 5632 = 0x1600)	AV	Register	R
18	36	CountDin4	Startet den Zähler des Digitaleingangs Din4	1 = 256 (22 = 22*256 = 5632 = 0x1600)	AV	Register	R
19	38	CountDin5	Startet den Zähler des Digitaleingangs Din5	1 = 256 (22 = 22*256 = 5632 = 0x1600)	AV	Register	R
20	40	CountDin6	Startet den Zähler des Digitaleingangs Din6	1 = 256 (22 = 22*256 = 5632 = 0x1600)	AV	Register	R
21	42	CountDin7	Startet den Zähler des Digitaleingangs Din7	1 = 256 (22 = 22*256 = 5632 = 0x1600)	AV	Register	R
22	44	Ain1	Lesen des Wertes von Analogeingang Al1	1 = 256 (22 = 22*256 = 5632 = 0x1600)	AV	Register	R
23	46	Ain2	Lesen des Wertes von Analogeingang AI2	1 = 256 (22 = 22*256 = 5632 = 0x1600)	AV	Register	R

24	48	Ain3	Lesen des Wertes von Analogeingang Al3	1 = 256 (22 = 22*256 = 5632 = 0x1600)	AV	Register	R
25	50	Ain4	Lesen des Wertes von 1 = 256 (22 = 22*256 = 5632		Register	R	
26	52	Ain5	Lesen des Wertes von Analogeingang Al5	1 = 256 (22 = 22*256 = 5632 = 0x1600)	AV	Register	R
27	54	Ain6	Lesen des Wertes von Analogeingang Al6	1 = 256 (22 = 22*256 = 5632 = 0x1600)	AV	Register	R
28	56	Pt1	Lesen des Wertes des PT1000Sensors, Eingang PT1	1°C = 256 (22 °C = 22*256 = 5632 = 0x1600)	AV	Register	R
29	58	Dout1	Lesen des Zustandes des Digitalausgangs DO1	0 - disabled, 1 - enabled	BV	Coil 928	R
30	60	Dout2	Lesen des Zustandes des Digitalausgangs DO2	0 - disabled, 1 - enabled	BV	Coil 960	R
31	62	Dout3	Lesen des Zustandes des Digitalausgangs DO3	0 - disabled, 1 - enabled	BV	Coil 992	R
32	64	Dout4	Lesen des Zustandes des Digitalausgangs DO4	0 - disabled, 1 - enabled	BV	Coil 1024	R
33	66	Dout5	Lesen des Zustandes des Digitalausgangs DO5	0 - disabled, 1 - enabled	BV	Coil 1056	R
34	68	Dout6	Lesen des Zustandes des Digitalausgangs DO6	0 - disabled, 1 - enabled	BV	Coil 1088	R
35	70	Dout1_6	Dout1 6 Ausgänge DO1 DO6 (Variable 16 L		Coil 25922608	R	
36	72	Aout1	Lesen des Analogausgangswertes Aout1	1V = 256 (10V = 10*256 = 2560 = 0xA00)	AV	Register	R
37	74	Aout2	Lesen des Analogausgangswertes Aout2	1V = 256 (10V = 10*256 = 2560 = 0xA00)	AV	Register	R

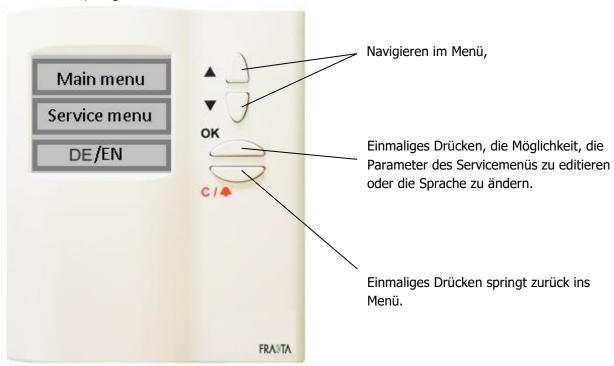
Die Variablen, die die Zustände der Ausgänge steuern (ohne Endschalter, ohne den Speicherzustand vor dem Rücksetzen der Spannungsversorgung). Je nach Werkseinstellung ändern die fett markierten Variablen den Zustand der Ausgänge.

Adres	(DEC)	Variable	Variable Decription		Туре		Read [R] / Write [W]
BacNet	Modbus				BacNet	Modbus	
38	76	SetDout1	Einstellung des Ausgangszustandes DO1	0 - disabled, 1 - enabled	BV	Coil 1216	R/W
39	78	SetDout2	Einstellung des Ausgangszustandes DO2	0 - disabled, 1 - enabled	BV	Coil 1248	R/W
40	80	SetDout3	Einstellung des Ausgangszustandes DO3	0 - disabled, 1 - enabled	BV	Coil 1280	R/W
41	82	SetDout4	Einstellung des Ausgangszustandes DO4	0 - disabled, 1 - enabled	BV	Coil 1312	R/W
42	84	SetDout5	Einstellung des Ausgangszustandes DO5	0 - disabled, 1 - enabled	BV	Coil 1344	R/W
43	86	SetDout6	Einstellung des Ausgangszustandes DO6	0 - disabled, 1 - enabled	BV	Coil 1376	R/W
44	88	SetDout1_6	Einstellung des Ausgangszustandes DO1DO6 (Variable 16 BIT)	0 - disabled, 1 - enabled	BSV	Coil 33923408	R/W

45	90	SetAout1	SetAout1 Einstellung des Analogausgangs		AV	Register	R/W
46	92	SetAout2	Aout1	1V = 256 (10V = 10*256 = 2560 = 0xA00)	AV	Register	R/W
47	94	SetPermDout1	Einstellung des Ausgangszustandes DO1	0 - disabled, 1 - enabled	BV	Coil 1504	R/W
48	96	SetPermDout2	Einstellung des Ausgangszustandes DO2	0 - disabled, 1 - enabled	BV	Coil 1536	R/W
49	98	SetPermDout3	Einstellung des Ausgangszustandes DO3	0 - disabled, 1 - enabled	BV	Coil 1568	R/W
50	100	SetPermDout4	Einstellung des Ausgangszustandes DO4	0 - disabled, 1 - enabled	BV	Coil 1600	R/W
51	102	SetPermDout5	Einstellung des Ausgangszustandes DO5	0 - disabled, 1 - enabled	BV	Coil 1632	R/W
52	104	SetPermDout6	Einstellung des Ausgangszustandes DO6	0 - disabled, 1 - enabled	BV	Coil 1664	R/W
53	106	SetPermDout1_6	Einstellung der Ausgänge Zustand DO1DO16	0 - disabled, 1 - enabled	BSV	Coil 41924208	R/W
54	108	SetPermAout1	Einstellung des Analogausgangs	1V = 256 (10V = 10*256 = 2560 = 0xA00)	AV	Register	R/W
55	110	SetPermAout2	Aout1	1V = 256 (10V = 10*256 = 2560 = 0xA00)	AV	Register	R/W

Variablen zum Lesen und Bearbeiten -Menüeinstellungen

Adres	s (DEC)	Variable	Decription	States	Туре		Read [R] / Write [W]
BacNet	Modbus				BacNet	Modbus	
56	112	OfsPt1	Messwert-Offset des PT1000Sensors, Eingang PT1	1°C = 256 (22 °C = 22*256 = 5632 = 0x1600)	AV	Register	R/W
57	114	TypeDin1	Auswahl der Art der digitalen		BV	Coil 1824	R/W
58	116	TypeDin2	Eingänge (der als schnell eingestellte Eingang kann die		BV	Coil 1856	R/W
59	118	TypeDin3	Frequenz bis zu 1kHz messen,	0 - Slow AC/DC, 1 - Fast DC	BV	Coil 1888	R/W
60	120	TypeDin4	während die Spannungsversorgung des Controllers 24VDC beträgt).		BV	Coil 1920	R/W
61	122	TypeDin5	, , , , , , , , , , , , , , , , , , , ,		BV	Coil 1952	R/W
62	124	TypeDin6			BV	Coil 1984	R/W
63	126	TypeDin7			BV	Coil 2016	R/W
64	128	ResDin1	Zählerreset der Starts der digitalen		BV	Coil 2048	R/W
65	130	ResDin2	Eingänge		BV	Coil 2080	R/W
66	132	ResDin3		0 - inactive, 1 - active	BV	Coil 2112	R/W
67	134	ResDin4		1 delive	BV	Coil 2144	R/W
68	136	ResDin5			BV	Coil 2176	R/W


69	138	ResDin6			BV	Coil 2208	R/W
70	140	ResDin7			BV	Coil 2240	R/W
71	142	TypeAin1	Auswahl der Eingangsart Ain 16		BV	Coil 2272	R/W
72	144	TypeAin2			BV	Coil 2304	R/W
73	146	TypeAin3			BV	Coil 2336	R/W
74	148	TypeAin4		0 - "0-10VDC", 1 - "0-20mA"	BV	Coil 2368	R/W
75	150	TypeAin5			BV	Coil 2400	R/W
76	152	TypeAin6			BV	Coil 2432	R/W
77	154	TypeSetDout Zustände Dout 16	Auswahl der Art der Stellgrößen der digitalen Ausgänge	0 - SetDoutX 1 - SetPermDoutX 2 - SetDout1_16 4 - SetPermDout1_16	MSV	Register	R/W
78	156	TypeSetAout	Auswahl der Art der Stellgrößen der Analogausgänge Zustände Aout12	0 - SetAoutX 1 - SetPermAoutX 2 - SetAout1_16 4 - SetPermAout1_16	MSV	Register	R/W
79	158	ModComDetAct	Aktivierung des Moduls Kommunikationstest mit einem Master-Modbus-Gerät (interner Kommunikationstest)	0 - inactive, 1 - active	BV	Coil 2528	R/W
80	160	ModComDetTime	Messzeit der verlorenen Kommunikation	1 = 256 (22 = 22*256 = 5632 = 0x1600)	AV	Register	R/W
81	162	ModComDetOK	Kommunikationsstatus des Moduls mit dem Modbus-Master-Gerät	0 - lack, 1 - correct	BV	Coil 2592	R
82	164	VarComDetAct	Aktivierung der Testverbindung mit einem Mastergerät (zyklische Änderung des Wertes der Variablen "VarComDet")	0 - inactive, 1 - active	BV	Coil 2624	R/W
83	166	VarComDetTime	Die Zykluszeit von Änderungen des für die Kommunikation erforderlichen Wertes wird als korrekt erkannt.	1 = 256 (22 = 22*256 = 5632 = 0x1600)	AV	Register	R/W
84	168	VarComDetOK	Kommunikationsstatus des Moduls mit dem Mastergerät	0 - lack, 1 - correct	BV	Coil 2688	R
85	170	VarComDet	Kommunikationsvariable testen durch zyklische Wertänderungen von 0/1	0/1	BV	Coil 2720	R/W
86	172	LostComDout1	Setzen des Zustandes der Ausgänge Dout166 bei fehlender		MSV	Register	R/W
87	174	LostComDout2	Kommunikation mit dem MasterGerät (bei Einstellung auf 1 oder 3		MSV	Register	R/W
88	176	LostComDout3	Vorrang vor den Einstellungen SetDout, SetPermDout)	0 – do not change,	MSV	Register	R/W
89	178	LostComDout4		1 – set Off , 3 – set On	MSV	Register	R/W
90	180	LostComDout5			MSV	Register	R/W
91	182	LostComDout6			MSV	Register	R/W
92	184	LostComAout1	Reaktion auf den Ausfall des Kommunikationsausgangs Aout1	0 - do not change, 1 - "SetLostComAout1"	MSV	Coil 2944	R/W
93	186	SetLostComAout1	Einstellung des Wertes bei Kommunikationsausfall für Ausgang Aout1	1 = 256 (22 = 22*256 = 5632 = 0x1600)	AV	Register	R/W

94	188	LostComAout2	Reaktion auf den Ausfall des Kommunikationsausgangs Aout2	0 - do not change, 1 - "SetLostComAout1"	MSV	Coil 3008	R/W
95	190	SetLostComAout2	Einstellung des Wertes bei Kommunikationsausfall für Ausgang Aout2	1 = 256 (22 = 22*256 = 5632 = 0x1600)	AV	Register	R/W
96	192	E_Din1	Emulation der digitalen Eingänge Din1Din7 (bei Einstellung auf 1		MSV	Register	R/W
97	194	E_Din2	oder 3 hat Vorrang vor dem physikalischen Zustand des		MSV	Register	R/W
98	196	E_Din3	Eingangs) Auswahl der Art der Stellgrößen der Analogausgänge Zustände		MSV	Register	R/W
99	198	E_Din4	Aout12 Aktivierung des Moduls		MSV	Register	R/W
100	200	E_Din5	 Kommunikationstest mit einem Master-Modbus-Gerät (interner Kommunikationstest) 		MSV	Register	R/W
101	202	E_Din6	Messzeit der verlorenen Kommunikation		MSV	Register	R/W
102	204	E_Din7	Kommunikationsstatus des Moduls mit dem Modbus-Master-Gerät Aktivierung der Testverbindung mit einem Mastergerät (zyklische Änderung des Wertes der Variablen "VarComDet") Die Zykluszeit von Änderungen des für die Kommunikation erforderlichen Wertes wird als korrekt erkannt.	0 – no emulation, 1 – set open, 3 – set close	MSV	Register	R/W
103	206	Em_Ain1	Kommunikationsstatus des Moduls mit dem Mastergerät	0 - inactive, 1 - active	MSV	Coil 3296	R/W
104	208	E_Ain1		1 = 256 (22 = 22*256 = 5632 = 0x1600)	AV	Register	R/W
105	210	Em_Ain2		0 - inactive, 1 - active	MSV	Coil 3360	R/W
106	212	E_Ain2		1 = 256 (22 = 22*256 = 5632 = 0x1600)	AV	Register	R/W
107	214	Em_Ain3		0 - inactive, 1 - active	MSV	Coil 3424	R/W
108	216	E_Ain3		1 = 256 (22 = 22*256 = 5632 = 0x1600)	AV	Register	R/W
109	218	Em_Ain4		0 - inactive, 1 - active	MSV	Coil 3488	R/W
110	220	E_Ain4		1 = 256 (22 = 22*256 = 5632 = 0x1600)	AV	Register	R/W
111	222	Em_Ain5]	0 - inactive, 1 - active	MSV	Coil 3552	R/W
112	224	E_Ain5		1 = 256 (22 = 22*256 = 5632 = 0x1600)	AV	Register	R/W
113	226	Em_Ain6		0 - inactive, 1 - active	MSV	Coil 3616	R/W
114	228	E_Ain6		1 = 256 (22 = 22*256 = 5632 = 0x1600)	AV	Register	R/W
115	230	Em_Pt1	Emulation des PT1000Sensoreingangs Pt1 (bei	0 - inactive, 1 - active	MSV	Coil 3680	R/W

116	232	E_Pt1	Einstellung auf 1 hat dieser Vorrang vor dem physikalischen Zustand des Eingangs)	1°C = 256 (22 °C = 22*256 = 5632 = 0x1600)	AV	Register	R/W
117	234	F_Dout1	Forcen der digitalen Ausgänge Dout4Dout6 (bei Einstellung auf		MSV	Register	R/W
118	236	F_Dout2	1 oder 3 hat Vorrang vor den Einstellungen SetDout,		MSV	Register	R/W
119	238	F_Dout3	SetPermDout)	0 – no forcing,	MSV	Register	R/W
120	240	F_Dout4		1 – forcing Off,3 – forcing On.	MSV	Register	R/W
121	242	F_Dout5			MSV	Register	R/W
122	244	F_Dout6			MSV	Register	R/W
123	246	Fo_Aout1	Forcen der Analogausgänge Aout1Aout2 (bei Einstellung auf	0 - inactive, 1 - active	MSV	Coil 3936	R/W
124	248	F_Aout1	Vorrang vor Variablen steuern Sie den Zustand des Ausgangs SetAout, SetPermAout)	1V = 256 (10V = 10*256 = 2560 = 0xA00)	AV	Register	R/W
125	250	Fo_Aout2	- SetAout, Setreminout)	0 - inactive, 1 - active	MSV	Coil 4000	R/W
126	252	F_Aout2		1V = 256 (10V = 10*256 = 2560 = 0xA00)	AV	Register	R/W
127	254	A_InEmul	Alarm der Moduleingänge Emulation ELPM	0 – no alarm, 1 - alarm occurs	BV	Register	R
128	256	A_OutForce	Alarm der Moduleingänge für ELPM	0 – no alarm, 1 - alarm occurs	BV	Register	R

Einstellung und Bedienung über HMI-Raumgerät

Die ELPM-...asEXT Anwendung der ELPM-Module wurde mit der Möglichkeit der Konfiguration durch Anschluss des Raumgerätes HMI Advance zur Anbindung von RS485-1 und Einstellung der entsprechenden Parameter (Reihenfolge der Menüpunkte entsprechend der Reihenfolge und Beschreibung der Variablenliste) ausgestattet.

Hauptmenü

Name	Default value	Beschreibung
Main menu	-	Lesen des aktuellen Status der Ein-/Ausgänge und der Möglichkeit, Ausgangseinstellungen vorzunehmen
Settings	-	Es erlaubt Ihnen, zusätzliche Funktionen zu konfigurieren.
DE/EN	DE	Auswahl der Menüsprache (Deutsch/Englisch).
v1.4 01-03-17 ELPM	-	Die aktuelle Version der Software und der Modulname